

complessità degli algoritmi

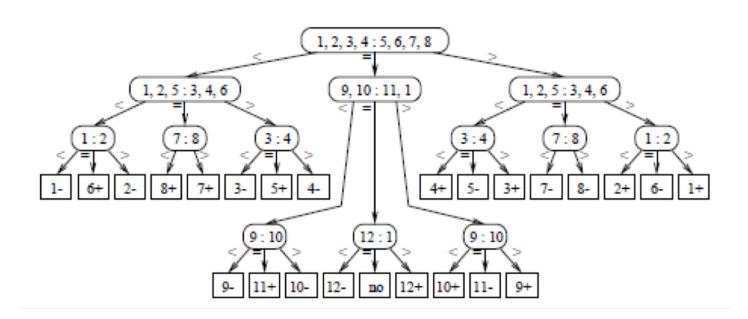
algoritmo

- o matematico persiano Muhammad *al-Khwarizmi* (IX secolo)
- o un **algoritmo** è una sequenza finita di passi interpretabili da un esecutore
- l'esecuzione di un algoritmo potrebbe richiedere un tempo non necessariamente finito
- un algoritmo non deve necessariamente essere espresso in un linguaggio di programmazione
- o l'algoritmo si trova ad un livello di *astrazione* più alto rispetto ad ogni programma che lo implementa

problema

- o abbiamo 12 monete che sembrano identiche ma non lo sono
- una di esse ha un peso diverso dalle altre ma non sappiamo qual è e neppure se è più *pesante* o più *leggera* delle altre
- o dobbiamo scoprire qual è la moneta di peso diverso, con *3 pesate* comparative utilizzando una bilancia a due piatti

algoritmo



classificazione degli algoritmi

- o algoritmi **sequenziali**: eseguono un solo passo alla volta
- o algoritmi *paralleli*: possono eseguire più passi per volta
- o algoritmi *deterministici*: ad ogni punto di scelta, intraprendono una sola via determinata dalla valutazione di un'espressione
- o algoritmi *probabilistici*: ad ogni punto di scelta, intraprendono una sola via determinata a caso
- o algoritmi *non deterministici*: ad ogni punto di scelta, esplorano tutte le vie contemporaneamente

problemi e algoritmi

- o dato un problema, possono esistere *più algoritmi* che sono *corretti* rispetto ad esso
- o ... e un numero illimitato di algoritmi errati :(
- o gli algoritmi corretti possono essere *confrontati* rispetto alla loro complessità o *efficienza computazionale*

complessità di un algoritmo in base all'uso delle risorse

- o l'algoritmo viene valutato in base alle *risorse* utilizzate durante la sua esecuzione:
 - o *tempo* di calcolo
 - o spazio di *memoria* (risorsa riusabile)
 - o *banda* trasmissiva (risorsa riusabile)

domanda

o *esiste* sempre un algoritmo risolutivo per un problema?

alberto ferrari - fondamenti di informatica

problemi decidibili e indecidibili

o problema decidibile

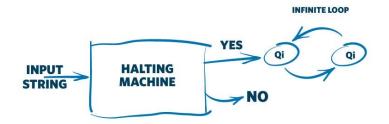
o se esiste un algoritmo che produce la *soluzione in tempo finito* per ogni istanza dei dati di ingresso del problema

o problema *indecidibile*

o se *non* esiste nessun algoritmo che produce la *soluzione in tempo finito* per ogni istanza dei dati di ingresso del problema

esempio di problema indecidibile

- o il problema dell'arresto (Halting Problem):
 - o dato un programma e un input, esiste un algoritmo che decide sempre se il programma terminerà o andrà in loop infinito?
 - Alan Turing ha dimostrato che non esiste un algoritmo generale che possa stabilirlo per ogni possibile programma e input



problemi trattabili e intrattabili

- o problemi *intrattabili*
 - o *non* sono *risolvibili* in tempo polinomiale nemmeno da un *algoritmo non deterministico*
- o problemi *trattabili*
 - o si dividono in due categorie
 - o ${\it P}$ insieme dei problemi risolvibili in tempo polinomiale da un algoritmo ${\it deterministico}$
 - o *NP* insieme dei problemi risolvibili in tempo polinomiale da un algoritmo *non* deterministico

esempi problemi trattabili P e NP

- o *ordinamento di una lista* (deterministico polinomiale *P*)
 - o data una lista disporre gli elementi in crescente (o decrescente)
 - o esistono algoritmi (ad esempio, mergesort o quicksort) che risolvono l'ordinamento in tempo polinomiale rispetto alla dimensione della lista (ad esempio, O(n log n), dove n è il numero di elementi)
- o *problema del commesso viaggiatore* (non deterministico polinomiale *NP*)
 - o dato un insieme di città e le distanze tra di esse trovare qual è il percorso più breve che visita tutte le città e torna alla partenza
 - o verifica: se è fornita una soluzione, è possibile verificarne la correttezza (e calcolare la lunghezza totale) in tempo polinomiale
 - o ma non si conosce un algoritmo che trovi sempre la soluzione ottima in tempo polinomiale

complessità temporale

- o confronto fra algoritmi che risolvono lo stesso problema
 - o si valuta il *tempo di esecuzione* (in numero di passi) in modo indipendente dalla tecnologia dell'esecutore
- o in molti casi la *complessità* è legata al tipo o al numero dei dati di input
 - o ad esempio la ricerca di un valore in una struttura ordinata dipende dalla dimensione della struttura
- o il tempo è espresso in funzione della dimensione dei dati in ingresso T(n)
 - o per confrontare le funzioni tempo ottenute per i vari algoritmi si considerano le funzioni asintotiche

funzione asintotica

- o data la funzione polinomiale f(n) che rappresenta il tempo di esecuzione dell'algoritmo al variare della dimensione n dei dati di input
- o la funzione asintotica *ignora le costanti moltiplicative* e i *termini non dominanti* al crescere di n

```
\times esempio: f(x) = 3x^4 + 6x^2 + 10
```

- x funzione asintotica = x^4
- o l'*approssimazione* di una funzione con una funzione asintotica è molto utile per semplificare i calcoli
- o la notazione asintotica di una funzione descrive il comportamento in modo semplificato, ignorando dettagli della formula
 - nell'esempio: per valori sufficientemente alti di x il comportamento di $f(x) = 3x^4 + 6x^2 + 10$ è approssimabile con la funzione $f(x) = x^4$

casi

- o il tempo di esecuzione può essere calcolato in caso
 - o *pessimo* dati d'ingresso che massimizzano il tempo di esecuzione
 - o *ottimo* dati d'ingresso che minimizzano il tempo di esecuzione
 - o *medio* somma dei tempi pesata in base alla loro probabilità

alberto ferrari - fondamenti di informatica

complessità temporale

 \times O(1) Complessità costante

× O(log n) Complessità logaritmica

× O(n) Complessità lineare

 $\sim O(n*log n)$ Complessità pseudolineare

 \times $O(n^2)$ Complessità quadratica

 \times $O(n^k)$ Complessità polinomiale

 \wedge $O(a^n)$ Complessità esponenziale

algoritmi non ricorsivi

- o calcolo della complessità
 - o vengono in pratica "contate" le operazioni eseguite
- o calcolo della complessità di algoritmi non ricorsivi
 - o il tempo di esecuzione di un'istruzione di *assegnamento* che non contenga chiamate a funzioni è *1*
 - o il tempo di esecuzione di una chiamata ad una funzione è 1 + il tempo di esecuzione della funzione
 - o il tempo di esecuzione di un'istruzione di selezione è il tempo di valutazione dell'*espressione* + il tempo *massimo* fra il tempo di esecuzione del ramo *True* e del ramo *False*
 - il tempo di esecuzione di un'istruzione di *ciclo* è dato dal tempo di valutazione della *condizione* + il tempo di esecuzione del *corpo* del ciclo moltiplicato per il numero di *volte* in cui questo viene eseguito

esempio: complessità temporale fattoriale

```
def factorial(n: int) ->int:
    ''' n! n factorial '''
    fact = 1
    for i in range(2,n+1):
        fact = fact * i
    return fact
```

```
T(n) = 1 + (n-1)(1+1+1)+1 = 3n - 1 = O(n)
```


complessità computazionale

o *confrontare algoritmi corretti* che risolvono lo stesso problema, allo scopo di scegliere quello *migliore* in relazione a uno o più parametri di valutazione

valutazione con un parametro

- o se si ha a disposizione *un solo parametro* per valutare un algoritmo, per esempio il tempo d'esecuzione, è semplice la scelta: il più veloce
- o ogni altra caratteristica non viene considerata

valutazione con più parametri

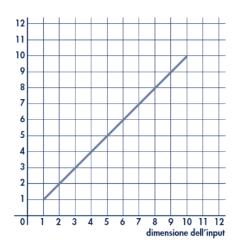
- o nel caso di *due parametri* normalmente si considera
- o il *tempo*
 - o numero di passi (istruzioni) che occorrono per produrre il risultato finale
 - o passi e non secondi o millisecondi perché il tempo varia al variare delle potenzialità del calcolatore
- o lo **spazio**
 - o occupazione di memoria

terminologia

- O (O grande) equivale al simbolo <= corrisponde a "al più come" O(f(n)) equivale a "il tempo d'esecuzione dell'algoritmo è minore o uguale a f(n)"
- o (o piccolo) equivale al simbolo < o(f(n)) equivale a "il tempo d'esecuzione dell'algoritmo è strettamente minore a f(n)"
- Θ (teta) corrispondente al simbolo = $\Theta(f(n))$ equivale a "il tempo d'esecuzione dell'algoritmo è uguale a f(n)"
- Ω (omega grande) equivale al simbolo >= $\Omega(f(n))$ equivale a "il tempo d'esecuzione dell'algoritmo è maggiore o uguale a f(n)"
- ω (omega piccolo) equivale al simbolo > $\omega(f(n))$ equivale a "il tempo d'esecuzione dell'algoritmo è strettamente maggiore di f(n)"

complessità lineare

- o l'algoritmo ha complessità O(n)
- o esempio:
 - o algoritmo di ricerca lineare (sequenziale) di un elemento in una lista

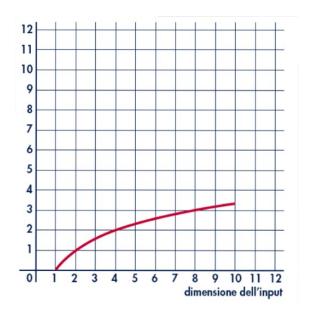


ricerca lineare

```
def linear_search(v: list, value) -> int:
    '''v: not necessarily sorted'''
    for i in range(len(v)):
        if v[i] == value:
            return i
    return -1
```


complessità logaritmica

- o esempio ricerca *dicotomica* in una lista ordinata
 - o la ricerca dicotomica ha complessità $O(log_2(n))$



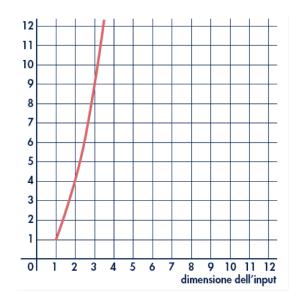
ricerca binaria (dicotomica)

Searching for "Meg" among ten ordered words

```
def binary search(v: list, value: int) -> int:
                                                                      Ada Ann Bea Eva Ivy Kay Lea Meg Sue Zoe ...
     ''' sorted list'''
     begin, end = 0, len(v) - 1
                                                                           "Kay" < "Meg"
     while begin <= end:</pre>
                                                                           Keep 2nd half
          middle = (begin + end) // 2
                                                                      Ada Ann Bea Eva Ivy Kay Lea Meg Sue Zoe
          if v[middle] > value:
                                                                           "Meg" < "Sue"
               end = middle - 1
                                                                           Keep 1st half
          elif v[middle] < value:</pre>
               begin = middle + 1
                                                                      Ada Ann Bea Eva Ivy Kay Lea Meg Sue Zoe
          else:
                                                                           Found "Meg"
               return middle
                                                                           Return pos #7
     return -1
                                                                      Ada Ann Bea Eva Ivy Kay Lea Meg Sue Zoe
```


complessità quadratica

- o un esempio è l'algoritmo di ordinamento *bubblesort* eseguito su una lista di elementi
 - o l'algoritmo ha complessità $O(n^2)$

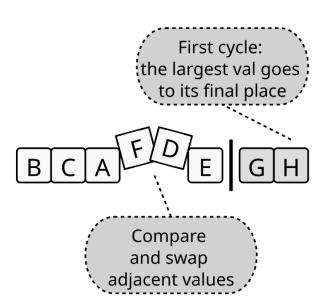


bubble sort

```
def swap(v: list, i: int, j: int):
    v[i], v[j] = v[j], v[i]

def bubble_sort(v: list, beg, end):
    ##last_swap = 0
    for i in range(beg, end - 1):
        if v[i] > v[i + 1]:
            swap(v, i, i + 1) ##last_swap = i
+ 1
    end -= 1 ##end = last_swap
    if end - beg > 1:
        bubble_sort(v, beg, end) # loop

vals = [38, 27, 43, 3, 9, 82, 10]
bubble_sort(vals, 0, len(vals))
print(vals)
```



complessità esponenziale

\circ l'algoritmo della $Torre\ di\ Hanoi\$ ha complessità $\Omega(2^n)$

- o la Torre di Hanoi è un rompicapo matematico composto da tre paletti e un certo numero di dischi di grandezza decrescente, che possono essere infilati in uno qualsiasi dei paletti.
- o il gioco inizia con tutti i dischi incolonnati su un paletto in ordine decrescente, in modo da formare un cono.
- o lo scopo è portare tutti dischi sull'ultimo paletto, potendo spostare solo un disco alla volta e potendo mettere un disco solo su uno più grande, mai su uno più piccolo

hanoi

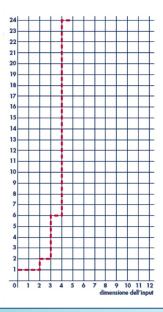
```
def move_towers(towers: list, n: int, src: int, tmp:
int, dst: int):
    # if there are discs above, move n-1 away
    if n > 1:
        move_towers(towers, n - 1, src, dst, tmp);

# now move the largest disc (of n) to its dest
    top_disc = towers[src].pop()
    towers[dst].append(top_disc)
    print_towers(towers)

# if there were discs above, move those on top
    if n > 1:
        move_towers(towers, n - 1, tmp, src, dst)
```


complessità fattoriale

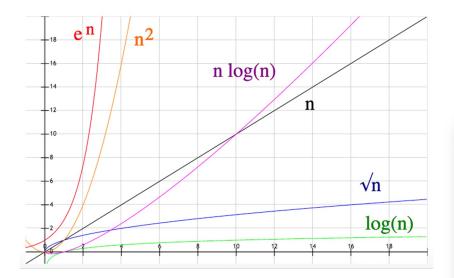
- o è quella che cresce *più velocemente* rispetto a tutte le precedenti
- o esempio: algoritmo che calcola tutti gli anagrammi di una parola di n lettere distinte ha complessità $\Theta(n!)$



anagrammi

```
def anagram_string(s: str) -> list:
    ''' return a list of all possible anagrams of s '''
    if len(s) <= 1:
        return [s]
    anagrams = []
    for i, c in enumerate(s):
        for sub_anagram in anagram_string(s[:i] + s[i+1:]):
            anagrams.append(c + sub_anagram)
    return list(set(anagrams)) # Removes duplicates if any</pre>
```


confronto



	n	n/2	log(n)
	10	5	3,321928
	20	10	4,321928
	30	15	4,906891
	40	20	5,321928
	50	25	5,643856
	60	30	5,906891
	70	35	6,129283
	80	40	6,321928
	90	45	6,491853
	100	50	6,643856
	300	150	8,228819
	1000	500	9,965784
	10000	5000	13,28771
1	00000	50000	16,60964

complessità computazionale

algoritmi di ordinamento

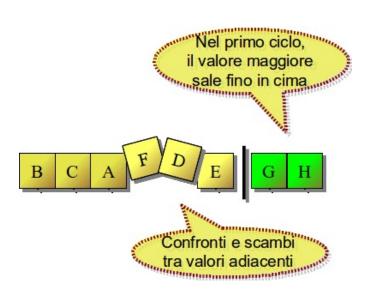
https://www.toptal.com/developers/sorting-algorithms

bubble sort

```
def swap(v: list, i: int, j: int):
    v[i], v[j] = v[j], v[i]

def bubble_sort(v: list, beg, end):
    ##last_swap = 0
    for i in range(beg, end - 1):
        if v[i] > v[i + 1]:
            swap(v, i, i + 1) ##last_swap = i
+ 1
    end -= 1 ##end = last_swap
    if end - beg > 1:
        bubble_sort(v, beg, end) # loop

vals = [38, 27, 43, 3, 9, 82, 10]
bubble_sort(vals, 0, len(vals))
print(vals)
```



analisi bubble sort

- o gli elementi *minori* salgono rapidamente, "come *bollicine*"
- o caso peggiore: lista rovesciata
- \circ numero di confronti e scambi: $n^2/2$
- \circ (n-1)+(n-2)+...+2+1 = n(n-1)/2 = n²/2 n/2 \approx n²/2
 - o applicata la formula di Gauss per la somma dei primi numeri
- o complessità n²
 - o anche in media, circa stessi valori

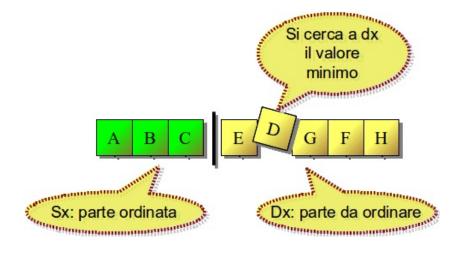
selection sort

```
def swap(v: list, i: int, j: int):
    v[i], v[j] = v[j], v[i]

def selection_sort(v: list):
    for i in range(len(v) - 1):
        min_pos = i

    for j in range(i + 1, len(v)):
        if v[j] < v[min_pos]:
            min_pos = j

    swap(v, min_pos, i)</pre>
```



analisi selection sort

- o ad ogni *ciclo* principale, si seleziona il valore *minore*
- o caso peggiore: lista rovesciata
- o numero di confronti n (n-1)/2; complessità n²
- o numero di scambi: n-1 scambi
- o Anche in media, circa stessi valori

insertion sort

```
def insertion sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
                                                                        Si prende
        # Move elements of arr[0..i-1],
                                                                      il primo val a dx
that are greater than key,
                                                                      Si cerca il suo
                                                                        posto a sx
        # up one position
        while j \ge 0 and arr[j] > key:
             arr[j + 1] = arr[j]
             i -= 1
        arr[j + 1] = key
    return arr
vals = [38, 27, 43, 3, 9, 82, 10]
```

sorted vals = insertion sort(vals)

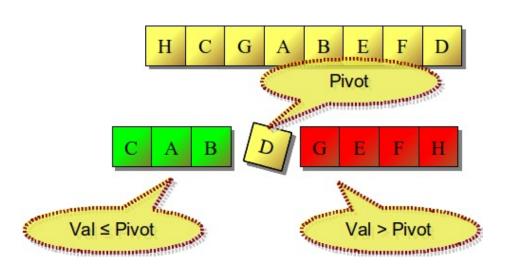
print(sorted vals)

analisi insertion sort

- o la *prima parte* è *ordinata*, vi si inserisce un elemento alla volta, più facile trovare il posto
- o caso peggiore: lista rovesciata
- o cicli: $1+2+...+(n-1) = n \cdot (n-1)/2$; **complessità** $O(n^2)$
 - o in media si scorre solo 1/2 della prima parte
- o in media n²/4 confronti e n²/4 scambi
- o ottimizzazioni
 - o ricerca binaria in parte ordinata
 - o inserimento a coppie, o gruppi

quick sort

```
def swap(v: list, i: int, j: int):
    v[i], v[j] = v[j], v[i]
def quick sort(v: list, beg, end):
    if end - beg <= 1:</pre>
        return
    mid, pivot = beg, v[end - 1]
    for i in range(beg, end):
        if v[i] <= pivot:</pre>
            swap(v, i, mid)
            mid += 1
    quick sort(v, beg, mid - 1)
    quick sort(v, mid, end)
vals = [38, 27, 43, 3, 9, 82, 10]
quick sort(vals, 0, len(vals))
print(vals)
```



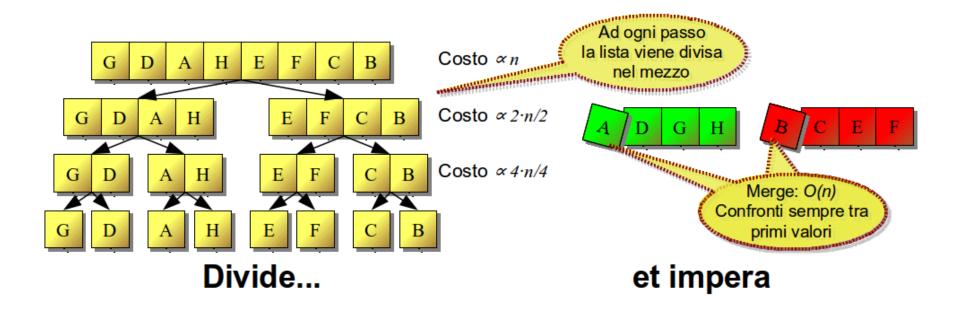
analisi quick sort

- o dato un insieme, sceglie un valore *pivot*
- o crea due sottoinsiemi: $x \le pivot$, x > pivot
- o stesso algoritmo sui 2 insiemi (*ricorsione*)
- o caso peggiore: lista rovesciata, n²
 - o dipende da scelta pivot, ma esiste sempre
- o caso medio: $n \cdot log_2(n)$

merge sort

```
def merge(v: list, beg, mid, end: int):
    result = [] # required extra memory
    i1, i2 = beq, mid
    while i1 < mid or i2 < end:
        if i1 < mid and (i2 == end or v[i1] \le v[i2]):
            result.append(v[i1])
                                              def merge sort(v: list, beg, end: int):
            i1 += 1
                                                  if end - beg <= 1:
        else:
                                                      return
            result.append(v[i2])
                                                  mid = (beq + end) // 2
            i2 += 1
                                                  merge sort (v, beg, mid)
    v[beg:end] = result
                                                  merge sort (v, mid, end)
                                                  merge(v, beg, mid, end)
                                              vals = [38, 27, 43, 3, 9, 82, 10]
                                              merge sort(vals, 0, len(vals))
                                              print(vals)
```


merge sort



analisi merge sort

- o simile a Quick Sort, ma non si sceglie pivot
 - o la fusione ha complessità lineare
- o caso peggiore, caso medio: $n \cdot log_2(n)$
- o spazio
 - o la fusione richiede *altra memoria*: n
 - o si può evitare il costo con spostamenti in place...
 - o aumenta però la complessità (necessari più scambi)

Name	Average	Best Case	Worst Case
Bubble Sort	$O(n^2)$	O(n)	$O(n^2)$
Insertion Sort	$O(n^2)$	O(n)	$O(n^2)$
Shell Sort	Depends	$O(n \log n)$	Depends
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$
Heap Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$

confronto

 $\underline{https://www.toptal.com/developers/sorting-algorithms}$

alberto ferrari - fondamenti di informatica