

rappresentazione di informazioni multimediali

alberto ferrari - fondamenti di informatica

caratteri e testo

- o necessaria *convenzione* per codifica numerica (*binaria*) dei caratteri
- o codifica *ASCII* (American *S*tandard *C*ode for *I*nformation *I*nterchange)
 - o inizialmente 7 bit $\Rightarrow 2^7 = 128$ caratteri
- o caratteri **alfanumerici**: lettere maiuscole, minuscole, numeri, spazio
- o simboli e *punteggiatura*: @, #, ...
- o caratteri di *controllo* (*non tutti visualizzabili*): TAB, LF, CR, BELL ecc.
- o interruzione di riga (a capo)
 - o Unix: *LF* (Line Feed, 0A)
 - o Multics, Unix etc., Mac OS X, BeOS, Amiga, RISC OS
 - o Vecchi Apple: **CR** (Carriage Return, 0D)
 - o Commodore, Apple II family, Mac OS up to version 9
 - \circ Windows: CR+LF (0D+0A)
 - o Most early OSes, DOS, OS/2, Windows, Symbian

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000	0	P/2/2018/10 20	00100000	32	Spc	01000000	64	@	01100000	96	
00000001	1	Start of heading	00100001	33	1	01000001	65	$\widecheck{\mathbf{A}}$	01100001	97	a
00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	С
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40	- (01001000	72	Н	01101000	104	ĥ
00001001	9	Horizontal tab	00101001	41)	01001001	73	Ι	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	j
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44	.,	01001100	76	L	01101100	108	1
00001101	13	Carriage return	00101101	45		01001101	77	M	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	р
00010001	17	Device control 1	00110001	49	1	01010001	81	Q	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	U	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	v
00010111	23	End trans, block	00110111	55	7	01010111	87	W	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	х
00011001	25	End of medium	00111001	57	9	01011001	89	Y	01111001	121	у
00011010	26	Substitution	00111010	58		01011010	90	Z	01111010	122	z
00011011	27	Escape	00111011	59	;	01011011	91	-	01111011	123	{
00011100	28	File separator	00111100	60	<	01011100	92	À	01111100	124	ì
00011101	29	Group separator	00111101	61	=	01011101	93	1	01111101	125	}
00011110	30	Record Separator	00111110	62	>	01011110	94	À	01111110	126	~
00011111	31	Unit separator	00111111	63	?	01011111	95		01111111	127	Del

tabella ascii estesa

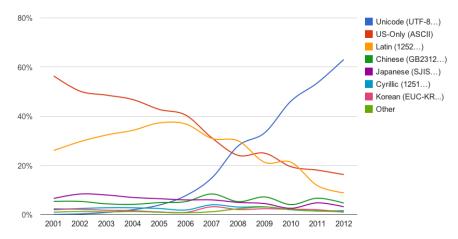
- o caratteri accentati + caratteri per grafici
- o code Page 437 per PC (DOS) in Nord America
- o possibile mischiare testo in inglese e francese (anche se in Francia CP850); ma non assieme greco (CP737), russo ecc.
 - o ISO 8859, estensioni standard per ASCII ad 8 bit
 - o ISO 8859-1 (o Latin1): Lingue dell'Europa Occidentale
 - o ISO 8859-2: Lingue dell'Europa Orientale
 - o ISO 8859-5: Alfabeto cirillico
 - o ISO 8859-15: Latin1 con simbolo euro (€)

https://www.ascii-codes.com/

unicode

- o *unicode* associa un preciso *code-point* (32 bit) a ciascun simbolo
 - o possibile rappresentare miliardi di simboli
 - o primi 256 code-point = Latin1
- o attualmente più di 30 sistemi di scrittura
 - o rappresentazione di geroglifici e caratteri cuneiformi
 - o da emoticon :-) a emoji 😌
 - o proposta per Klingon (da Star Trek) ... rifiutata 🕾

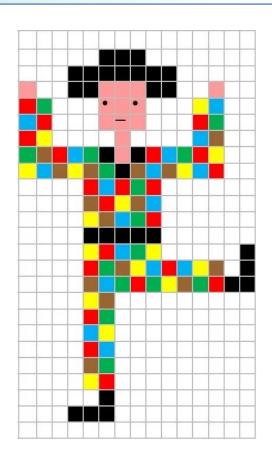
https://unicode-table.com



Unicode Transformation Format

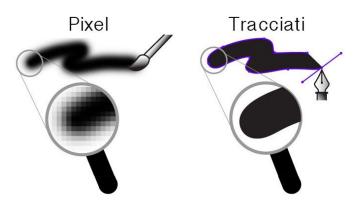
- o codifica di un code-point in una sequenza di bit
- o servono uno o più code-unit
 - o UTF-32 code-unit di 32-bit, 1 carattere \rightarrow 1 code unit
 - \circ UTF-16 code-unit di 16-bit, 1 carattere \rightarrow 1 2 code unit
 - o UTF-8 code-unit di 8-bit, 1 carattere $\rightarrow~1$ 4 code unit
 - o massima compatibilità con ASCII

UTF-8


- o se bit più alto a 0, nel code-point
 - o simbolo ASCII su 7 bit, invariato
- o altrimenti, codifica su *n code-unit* (byte)
 - o primo byte inizia con *n bit a 1, poi uno a 0*
 - o byte seguenti cominciano tutti con 10
 - o bit di payload / lunghezza codifica: 7/8, 11/16, 16/24, 21/32

C	haracter	Binary code point	Binary UTF-8	Hexadecimal UTF-8	
\$	U+0024	010 0100	00100100	24	
¢	U+00A2	000 1010 0010	11000010 10100010	C2 A2	
€	U+20AC	0010 0000 1010 1100	11100010 10000010 10101100	E2 82 AC	
0	U+10348	0 0001 0000 0011 0100 1000	11110000 10010000 10001101 10001000	F0 90 8D 88	

rappresentazione di informazioni multimediali


immagini digitali

immagini digitali

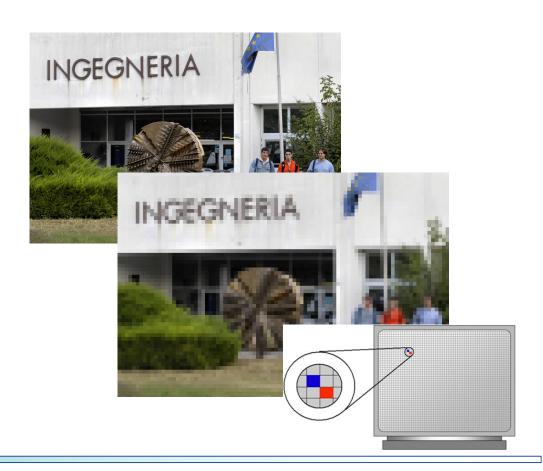
- o *digitalizzazione*: procedimento per convertire un'immagine in una sequenza binaria
- o tipologie di immagini digitali
 - o $raster \Rightarrow$ immagine suddivisa in una griglia di punti (pixel)
 - o $vettoriali \Rightarrow$ insieme di primitive geometriche
 - o linee, poligoni

palette

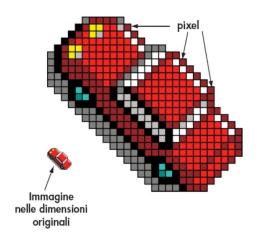
- rappresentazione digitale di una immagine
- la prima operazione è quella di definire una rappresentazione digitale per ogni colore
- stabilito il *numero di bit (profondità)* da utilizzare si definisce l'insieme dei colori (tavolozza, *palette*) che saranno utilizzati per rappresentare l'immagine

colore	codice binario	valore decimale
	0000	0
	0001	1
	0010	2
	0011	3
	0100	4
	0101	5
	0110	6
	0111	7
	1000	8
	1001	9
	1010	10
	1011	11
	1100	12
	1101	13
	1110	14
	1111	15

modelli di colore


- o occhio sensibile a variazioni luminosità
 - o *fotoricettori*: 6 mln di *coni*, 120 mln di *bastoncelli*
- o *RGB*: rosso, verde, blu
 - \circ 8 bit: 3 bit \times R e G, 2 \times B
 - \circ 24 bit: 8 bit \times R, G e B
 - o 32 bit: canale alpha grado trasparenza/opacità
- o *YUV*: luminosità, crominanza di R e B
 - o sistema PAL, JPEG, MPEG
 - o TV a colori (compatibilità B&W)
- o **HSL** (Hue Saturation Brightness): tonalità, saturazione e luminosità

pixel


- immagine suddivisa in piccoli rettangoli
 - elementi di base dell'immagine digitale
 - **pixel** (picture element)
- per ogni pixel individuare un *colore* dominante
- l'immagine diventa una sorta di mosaico (i tasselli del mosaico sono i pixel)
- la tavolozza fornisce la sequenza di bit associata ad ogni pixel
- l'insieme di tutte le sequenze è la rappresentazione digitale dell'immagine

pixel

- o il pixel è di un singolo colore
- o il pixel non ha dimensione metrica
 - o DPI (Dot Per Inch) (Punti per pollice)
 - o DPI esprime la quantità di punti stampati o visualizzati su una linea lunga un pollice
- o l'occhio umano non è in grado di percepire la suddivisione in pixel
 - o su un monitor a 72 DPI
 - o (le immagini con queste caratteristiche sono valide per il web)
 - o su una stampa a 300 DPI
 - o (600 DPI alta qualità)

immagini – approssimazione e risoluzione

- o aumentare il numero di pixel (*e ridurre quindi la loro dimensione*) migliora la *definizione* dell'immagine
- o i monitor dei computer usano lo stresso procedimento per visualizzare le immagini
- o la dimensione ridotta dei pixel e il numero elevato di colori fanno apparire al nostro occhio le immagini come se fossero formate da *linee continue* e

infinite sfumature di colore

- o risoluzione dell'immagine
 - o *numero dei pixel* (righe x colonne)
 - o *profondità* di colore (dimensione palette)

immagini - memoria

- o il numero di bit necessario per rappresentare un'immagine è elevato
- o es. risoluzione di 1920 x 1080 pixel e 24 bit colore:
 - o risulta "scomposta" in $1920 \times 1080 \cong 2$ milioni pixel
 - o per pixel colore a 24 bit (3 byte) \approx 6 Megabyte

\circ compressione

- o per limitare l'occupazione di memoria si ricorre a rappresentazioni compresse
- o alcune tecniche di compressione mantengono inalterata la qualità dell'immagine, eliminando soltanto le informazioni ridondanti
- o altre riducono il numero di byte complessivi ma comportano anche perdita di qualità

immagini raster - formati

- o il formato delle immagini identifica il *tipo* di rappresentazione digitale
- o *BMP*: immagine (normalmente) non compressa
- o *TIFF, PNG*: *comprimono* l'immagine, per ridurne l'occupazione, senza deteriorarla (compressione *lossless*)
- JPEG: comprime (molto di più), ma deteriora l'immagine (compressione lossy)

BMP

```
FILE INFO HEADER (14)

2 Tipo file (= "BM")

4 Dim. file (in byte)

4 Riservato

4 Offset immagine (in byte)

BITMAP INFO HEADER (40)

4 Dimensione struttura

4+4 Larghezza e altezza immagine

2 Piani (non usato)

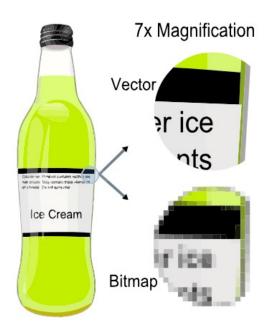
2 # bit per pixel

4+4 Compressione e dim. img (0 senza compressione)

4+4 Risoluzione orizz. e vert. (pixel per metro)

4+4 # colori in palette e # colori importanti

Palette (RGBQUAD)


4 Blue, Green, Red, Riservato
```


grafica vettoriale

- o immagine: insieme di primitive geometriche
 - o linee, poligoni..., colori, sfumature...
 - o per ogni elemento vengono definite le coordinate dei punti di applicazione
- o 🍁 qualità, a varie risoluzioni
- o 🎍 compressione dati
- o 🎍 gestione modifiche
- o **f** non intuitiva
- o 👎 possibilmente onerosa

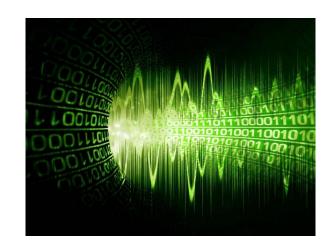
immagini vettoriali

o applicazioni

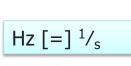
- o editoria (DTP), video-editing, architettura,
- o grafica 3D (CAD)
- o font vettoriali (caratteri scalabili in dimensione senza perdere definizione)

o formati

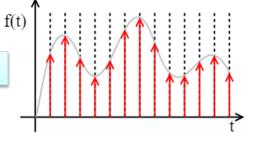
- o PS (PostScript), PDF (Portable Document Format), WMF (Windows MetaFile)
- o DXF (AutoCAD), CDR (CorelDraw), SWF (Flash)
- o SVG (Scalable Vector Graphics, utilizzato nel web)

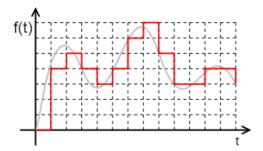

esempio file SVG in HTML

```
<!DOCTYPE html>
<html>
<body>
<svg height="150" width="400">
 <defs>
   linearGradient id="grad1" x1="0%" y1="0%" x2="0%" y2="100%">
     <stop offset="0%" style="stop-color:rgb(255,0,0);stop-opacity:1" />
     <stop offset="100%" style="stop-color:rgb(255,255,0);stop-opacity:1" />
   </defs>
 <ellipse cx="200" cy="70" rx="85" ry="55" fill="url(#grad1)" />
 Sorry, your browser does not support inline SVG.
</svg>
</body>
</html>
```



rappresentazione di informazioni multimediali

audio digitale




suono

- o suono
 - o onde longitudinali, di *compressione* e *rarefazione* dell'aria
- \circ grandezza analogica \rightarrow discretizzazione
- o campionamento (sampling) nel tempo
- o quantizzazione (quantizing) nelle ampiezze
- o qualità *CD*
 - o 44 kHz, 16bit
 - o spettro udibile: 20-20k Hz
- o qualità voce
 - o mono, 8 kHz, 8 bit

analogia immagini - suoni

- o *analogia* fra il procedimento di digitalizzazione delle immagini e quello dei suoni:
 - o scala dei valori sonori ⇔ tavolozza colori
 - \circ frequenza di campionamento \Leftrightarrow numero pixel
- o la scala dell'intensità sonora (numero di "suoni differenti") e la frequenza di campionamento determinano la *qualità* del suono

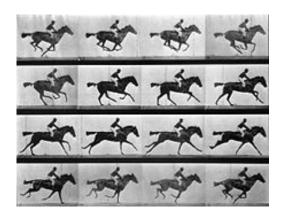
suoni digitali

- o come nel caso delle immagini la rappresentazione digitale dei suoni comporta un *elevato numero di byte*
- o per 60 secondi di audio
 - o con rappresentazione a *8 bit* dell'intensità sonora e un campionamento a *8000 Hertz* sono necessari circa *660 Kbyte* (qualità telefonica)
 - o con rappresentazione a *16 bit* dell'intensità sonora e un campionamento a *44 000 Hertz* i byte sono necessari circa *5 Mbyte* (*10Mb stereo*)

- analogamente alle immagini vengono usate *rappresentazioni compresse*
- o la più nota è **MP3** (Moving Picture Export Group Layer 3)
 - o l'*orecchio* umano è in grado di percepire solo suoni che stanno all'interno di un certo intervallo di frequenze
 - o i suoni a frequenze superiori (*ultrasuoni*) o inferiori (*infrasuoni*) vengono eliminati dalla rappresentazione
 - o questo, associato ad *altri procedimenti di compressione* permette di ridurre fino a oltre *12 volte* la quantità di dati digitali nella rappresentazione del suono senza un'apparente perdita di qualità

midi

- o analogamente con quanto visto per le immagini vettoriali, nel caso di suoni prodotti da strumenti musicali, è possibile rappresentare, al posto del suono, la sequenza di *azioni* necessarie per *generarlo*
- o si parla in questo caso di *suono sintetizzato*
- o un esempio di questo tipo sono i suoni *MIDI* (*Musical Instrument Digital Interface*) nei quali vengono registrati gli eventi che generano un certo suono


rappresentazione di informazioni multimediali

filmato digitale

filmati

- o prendiamo come modello una pellicola cinematografica:
 - o una sequenza di immagini statiche (fotogrammi)
 - o una o più bande per il sonoro
- o l'occhio umano non riesce a percepire come distinte due immagini separate da meno di un trentesimo di secondo

codifica filmati

- o ogni singolo fotogramma viene digitalizzato utilizzando i procedimenti visti per la rappresentazione delle immagini
- o la colonna sonora subisce lo stesso processo di conversione che abbiamo incontrato trattando i suoni digitali

memoria

- o *problema* legato all'occupazione di memoria
 - o (soprattutto per trasmissione)
- o procedimenti di *compressione* per ridurre la dimensione
 - o spesso solo una parte dell'immagine varia da un fotogramma al successivo
 - o rappresentazione del fotogramma di partenza e poi solo della parte che in ogni fotogramma è differente dal precedente
- o *fattori* che determinano la quantità di memoria:
 - o *lunghezza* della sequenza
 - o dimensione in *pixel*
 - o numero di *colori*
 - o numero di fotogrammi al secondo (*frame rate*)
 - o qualità del *sonoro*

rappresentazione di informazioni multimediali

documenti strutturati

documenti strutturati

o struttura logica

- o determina il *ruolo* della varie parti del testo
- o titoli, testo, note, etc.

o struttura grafica

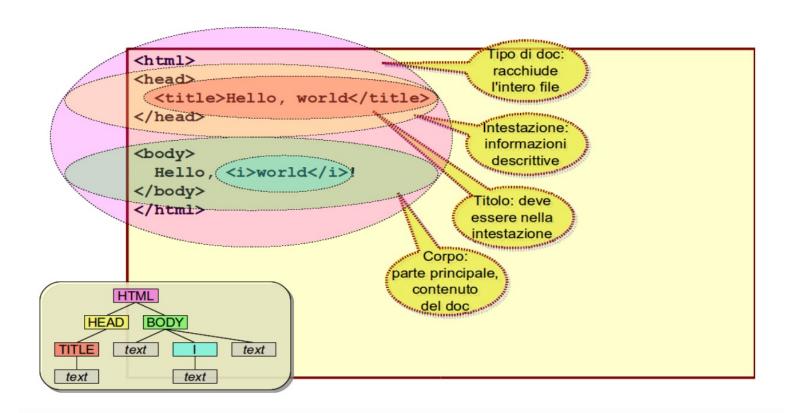
- $\circ\,$ assegna una $resa\ grafica$ ai ruoli
- o determina la resa grafica del documento nel suo complesso
 - o "stampa" in modo diverso ciò che ha ruolo diverso

o word processing

o non tanto scrivere, ma ingegnerizzare informazione

WYSIWYG

- What You See Is What You Get
 - o focus su *grafica*, si perde di vista la struttura logica
 - o grafica: non con i comandi grafici...
 - o ma definendo gli stili delle varie parti di doc, come ruoli logici
 - o es. stili di Word/Writer: "Titolo", "Nota in Calce", "Intestazione"
- o non nomi grafici, ma logici
- o in alternativa: editing basato su *comandi* o su *tag*



HyperText Markup Language

- o documenti strutturati
 - o standard *W3C*: http://www.w3.org/html/
- o HTML dichiara tipi di elementi
 - o paragrafi, titoli, liste, collegamenti ipertestuali, elementi multimediali ecc.
- o tipo di elemento descritto da tre parti
 - o tag di *apertura*, *contenuto*, tag di *chiusura*
 - Bla bla, **<***b***>***in grassetto*.**<***/b***>**, normale.
 - o molti tag permettono la definizione di attributi
 - o UniPR
- o id e class: attributi generici per assegnare ruoli logici

struttura pagina HTML

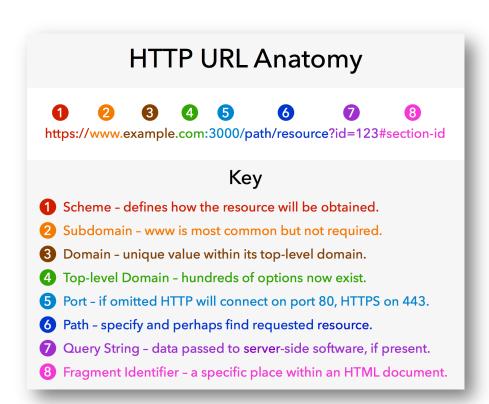
alberto ferrari - fondamenti di informatica

tag di formattazione testo

```
<h1>Il titolo più grande</h1> ...
<h6>Il titolo più piccolo</h6>
Questo è un paragrafo.<br />A-capo ma stesso paragrafo.

            Primo elemento di una lista non ordinata.
            Secondo elemento, <b>in grassetto</b>.
            cli>Secondo elemento di una lista non ordinata.
            secondo elemento, <b>in grassetto</b>.
            cli>Secondo elemento, <b>in grassetto</b>.
            cli>secondo elemento, <b/i> con un elemento generico con con class="techy">inline</span>.</div>
```


html5


- o nuovi elementi di struttura di Html 5
 - o header, main, nav, aside, footer
 - o article, section, details, summary
 - o menu, menuitem, figure, figcaption
- o altri nuovi elementi
 - o video, audio, canvas, embed
 - o mark, time
 - o output, progress, meter, datalist

Uniform Resource Locator

- URL è un riferimento per una risorsa
- il nome della risorsa dipende interamente dal protocollo
 - Per HTTP include:
 - nome dell'host su cui risiede la risorsa
 - numero di *porta* cui collegarsi (default = 80)
 - percorso della risorsa sulla macchina
 - stringa di *query* (dopo ?)
 - *frammento*: id di un elemento all'interno della risorsa (dopo #)

